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Abstract

The classical theory of intermittency assumes uniform density of points reinjected from
the chaotic to the laminar region. Though it works fine in somemodel systems, there
exist a number of so-called pathological cases characterized by a significant deviation
of main characteristics from the values predicted on the basis of the uniform distri-
bution. Recently we reported on how the reinjection probability density (RPD) can
be generalized. Here we extend this methodology and apply itto different dynami-
cal systems exhibiting anomalous Type-II and Type-III intermittencies. We show that
one-parametric power law RPD successfully accounts for a variety of significantly dif-
ferent statistics observed in distinct dynamical systems.The obtained RPDs fit well
into numerical data and enable analytic estimation of the length of the laminar phase
of intermittent behaviors. We also derive and classify characteristic relations between
the mean laminar length and main controlling parameter in perfect agreement with the
data provided by numerical simulations.

Keywords: Chaos, Intermittency, One dimensional map.

1. Introduction

Intermittency is a particular route to the deterministic chaos characterized by spon-
taneous transitions between laminar and chaotic dynamics.For the first time this con-
cept has been introduced by Pomeau and Maneville in the context of the Lorenz system
[1, 2]. Later the intermittency has been found in a variety ofdifferent systems in-
cluding, for example, periodically forced nonlinear oscillators, Rayleigh-Bénard con-
vection, derivative nonlinear Schrödinger (DNLS) equation, and the development of
turbulence in hydrodynamics (see e.g. [3–5]). Proper qualitative characterization of in-
termittency based on experimental data is especially useful for studying problems with
partial or complete lack of knowledge on exact governing equations, as it frequently
happens e.g. in Economics, Biology, and Medicine (see e.g. [6, 7]).

The intermittency has been classified in three types called I, II, and III [8]. The
local laminar dynamic of Type-I intermittency evolves in a narrow channel, whereas
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the laminar behavior of Type-II and Type-III intermittencies develops around a fixed
point of generalized Poincare maps:

xn+1 = (1+ ǫ)xn + ax3
n Type-II (1)

xn+1 = −(1+ ε)xn − ax3
n Type-III (2)

wherea > 0 accounts for the weight of the nonlinear component andε is a controlling
parameter (|ε| ≪ 1). Forε & 0, the fixed pointx0 = 0 becomes unstable, and hence tra-
jectories slowly escape from the origin preserving and reversing orientation for Type-II
and Type-III intermittencies, respectively.

Other characteristic attribute of the intermittency is theglobal reinjection mecha-
nism that maps trajectories of the system from the chaotic regionback into thelocal
laminar phase. This mechanism can be described by the corresponding reinjection
probability density (RPD), determined by the chaotic dynamics of the system. Analyt-
ical expressions for the RPD are available for a few problemsonly, hence to describe
main statistical properties of intermittency different approximations of the RPD have
been employed. The most common approach uses the uniform RPD, which, however,
works fine in some model cases only [9–11]. Another approach considers reinjection
into a given point in the presence of noise [12–14]. Nevertheless, there exist a number
of so-called pathological cases where these approaches fail to explain the behavior of
the dynamical systems.

Recently to describe the reinjection mechanism of a wide class of dynamical sys-
tems exhibiting intermittency we introduced a generalizedRPD, parametric power law
function, which includes the uniform reinjection as a particular case [15, 16]. We
showed that the shape of the generalized RPD is determined bythe behavior of trajec-
tories within chaotic regime in a vicinity of a point in the Poincare map with infinite or
zero tangent. Later it has been shown that this mechanism is robust against the external
noise [17]. Here we further develop this approach and apply it to pathological cases of
intermittency described in the literature [18, 19]. We showthat all these cases can be
now included in the general theoretical framework.

2. Assessment of RPD function

First let us briefly describe the theoretical framework thataccounts for a wide class
of dynamical systems exhibiting intermittency. We consider a general 1-D map

xn+1 = F(xn), F : R→ R (3)

which exhibits intermittency. The RPD function, denoted here byφ(x), determines the
statistical behavior of trajectories and depends on the particular shape ofF(x). There
is no direct clue on how to derive robustlyφ(x) from experimental or numerical data,
specially if only a small data set is available.

Earlier we have shown that the key point to solve this problemis to introduce the
following integral characteristics:

M(x) =



















∫ x

xs
τ φ(τ) dτ

∫ x

xs
φ(τ) dτ

if
∫ x

xs
φ(τ)dτ , 0

0 otherwise
(4)
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wherexs is some “starting” point. Setting a constantc > 0 that limits the laminar
region we define the domain ofM, i.e. M : [x0 − c, x0 + c] → R, wherex0 is the fixed
point of (3) defining the laminar phase of intermittency. In the previous works [15, 16]
we usedxs = x0, however, a more general approach setsxs = x0 ± c. Below, for the
sake of simplicity, we shall assume thatxs = x0 − c.

SinceM(x) is an integral characteristics, its numerical estimationis more robust
than direct evaluation ofφ(x). This allows reducing statistical fluctuations even for a
relatively small data set or data with high level of noise. Toapproximate numerically
M(x), we notice that it is an average over reinjection points in the interval (xs, x0 + c),
hence we can write

M(x) ≈
1
n

n
∑

j=1

x j , xn−1 < x ≤ xn (5)

where the data set (reinjection points){x j}
N
j=1 has been previously sorted, i.e.x j ≤ x j+1.

For a wide class of maps exhibiting Type-II or Type-III intermittencyM(x) follows
linear law

M(x) =

{

m(x− x̂) + x̂ if x ≥ x̂
0 otherwise

(6)

wherem ∈ (0, 1) is a free parameter and ˆx is the lower boundary of reinjections, i.e.
x̂ = inf{x j}. Then using (4) we obtain the corresponding RPD:

φ(x) =
α + 1
cα+1

(x− x̂)α, with α =
2m− 1
1−m

(7)

For m = 1/2 we recover the most common approach with uniform RPD, i.e.φ(x) =
1/c, widely considered in the literature. The RPD (7) has two limit cases:

φ0(x) = lim
m→0

φ(x) = δ(x− x̂) (8)

φ1(x) = lim
m→1

φ(x) = δ(x− c) (9)

In the following sections we shall show that the pathological cases of intermittency are
close to these limits.

3. Length of laminar phase

Usingφ(x) we can derive the fundamental characteristic of the intermittency, the
probability density of the length of the laminar phase. Following [16] we introduce the
absolute value ofxn. Then in the laminar phase the dynamics of|xn| can be approxi-
mated by the following differential equation

d|x|
dl
= ε|x| + a|x|3 (10)

wherel approximates the number of iterations in the laminar region, i.e. the length of
the laminar phase. Solving (10) forl we get

l(|x|) =
1
2ε

ln

(

c2(ε + a x2)
x2(ε + a c2)

)

(11)
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Since|x| in (11) is a random variable described byφ(x), the statistics ofl is also gov-
erned by the global properties of the RPD.

Let ψ(l) be the probability density function ofl, then it can be obtained by

ψ(l) = 2φ(X(l))
∣

∣

∣

∣

∣

dX(l)
dl

∣

∣

∣

∣

∣

(12)

where

X(l) =
√

ε
(

a+ ε/c2
)

e2ε l − a
(13)

is the inverse function ofl(|x|). Thus the pdf of the length of the laminar phase is given
by

ψ(l) = φ(X(l))
[

aX(l)3
+ εX(l)

]

(14)

Using (14) we can determine the mean value ofl

l =
∫ ∞

0
sψ(s)ds (15)

and hence estimate the critical exponent of the characteristic relation l ∝ ε−β which
describes, for small values ofε, how fast the length of the laminar phase grows while
ε decreases. The critical exponentβ depends onm and x̂ according with the following
cases:

• Case A: ˆx = x0

A1: m ∈ (0, 2/3). Equations (14) and (15) give

β =
2− 3m
2− 2m

(16)

Particularly limm→0 β = 1.

A2: m ∈ [2/3, 1). Equations (14) and (15) give

β = 0 (17)

• Case B: ˆx > x0. There is an upper cut-off for l and in the limitε → 0 the valuel
practically does not change, hence

β = 0 (18)

• Case C: ˆx < x0. If φ(x0) , 0 andφ′(x0) is bounded, then

β =
1
2

(19)

as in the uniform reinjection.

In certain situations the described limit values ofβ can be only reached numerically
using prohibitively small values ofε. In particular as we shall show below, in the Case
C if x̂ ≈ x0 the characteristic relation matches the Case A ( ˆx = x0) for small enough
values ofε.
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4. Anomalous Type-III intermittency

In this section we apply the theoretical results presented above to the map (3) with

F(x) = −((1+ ε)x+ x3)e−dx2
(20)

This dynamical system exhibits Type-III intermittency andthe pdf of the laminar length
deviates significantly from the prediction made by the classical theory. In Ref. [18] it
has been argued that the observed deviation is due to strongly nonuniform reinjection.
Let us now show how this reinjection process can be describedwithin our general
framework.

-15 0 15

0

15

xm-xm

x

xn+1

n

Figure 1: Sketch of the map (3), (20) exhibiting anomalous Type-III intermittency. Thick arrow illustrates
mapping of the points from the chaotic region (around the maximum of F(x)) into the region with practically
zero tangent ofF(x) and thin arrow indicates their reinjection to the laminar region.

The map (3), (20) has single unstable (ε > 0) fixed point atx0 = 0. The behavior
of trajectories (with direction reversing) nearx0 defines the laminar phase of inter-
mittency. Figure 1 illustrates the reinjection process from the chaotic region around
the maximum ofF(x) into the laminar region. Note the relative thickness of thear-
rows reflecting strong compression of the reinjected trajectories, which suggests sig-
nificantly nonuniformφ(x). The reinjection point nearest to the origin is given by
x̂ = F2(xm) & 0. Thus there is a gap around the originx ∈ (−x̂, x̂) that receives no rein-
jection. We notice that such reinjection mechanism differs from those proposed in Ref.
[16] based on expansion of trajectories around the maximum of F(x). Indeed, here the
functionF(x) has very small tangent for|x| ≫ 1, and points around its maximum are
mapped into a small region in the laminar zone (Fig. 1).

4.1. Estimation of RPD

To estimate the functionM we numerically iterated the map and then evaluated (5).
Due to the symmetry of the map, we consider only reinjection points from one side.

5



As expected the data obtained fit well to the linear law (Fig. 2(a)). Thus we can con-
clude that the power law (7) generated by trajectories passing around the maximum and
minimum of F(x) is robust against strong compression in the reinjection mechanism.
Least mean square fit of the data givesm = 0.0927 and ˆx = 0.9× 10−3. As expected
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x
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num. data 

linear fit
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Figure 2: Analysis of the anomalous Type-III intermittencyin the map (3), (20) (d = 0.1, ε = 0.005, and the
laminar interval [−1, 1]). a) Assessment of the RPD. Numerical simulation and function M(x) evaluated by
(5) (dots). Cyan dashed line corresponds to the least mean square fit. Black dashed line with slopem = 0.5
illustrates the functionM(x) corresponding to the uniform RPD. b) Numerical RPD. Dashedcyan curve
corresponds to (7) with the parameters found in (a). c) Probability density of the length of the laminar phase.
Cyan dashed line corresponds to (14).

the slope differs significant fromm = 1/2 (Fig. 2(a), dashed black line). Substituting
the found value into (7) we determine the exponentα = −0.898. We note that the ana-
lytical value for the lower boundary of reinjections ˆx = F2(xm) ≈ 10−4 is close enough
to the value found experimentally. In this work we shall use the experimental value ˆx
instead of the theoretical one to stress the fact that the exact shape ofF(x) and the exact
value x̂ are not necessary to obtain faithful description of all statistic properties of the
intermittency.

To crosscheck the obtained results we plotted numerical data and predicted shape
of φ(x) (Fig. 2(b)). Visual inspection confirms good agreement between the numeri-
cal data and the analytical expression. We note that for zero-tangent nonlinearity and
strong compression of the reinjected trajectories (Fig. 1)the RPD shown in Fig. 2(b) is
closed to the limitφ0 = δ(x− x̂) as we expected form→ 0 (see Eq. (8)).

4.2. Length of laminar phase

Earlier two separate analytical arguments to estimate the behavior ofψ(l) in oppo-
site limits (l → 0 andl → l̂) have been proposed [18]. We note that our approach
provides approximation ofψ(l) in a single shot (see Eq. (14)). Indeed, using the found
RPD (Fig. 2(a-b)) we can easily evaluate the pdf for the length of the laminar phase in
good agreement with experimental data (Fig. 2(c)).

Since x̂ > x0 = 0, according to our classification we are in the Case B and there
exists an upper cut-off for l. The cut-off length,l̂, is given by

X(l̂) = x̂

Hence asl → l̂ the pdfφ(X(l)) grows to infinity (α < 0) and in accordance with (14)
ψ→ ∞. It is worth noting that the presence of a cut-off is not a sufficient condition for
unbounded growth ofψ asl → l̂. Besides, it is also necessary thatm ∈ (0, 1/2). In the
next section we shall show a counterexample.
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The cut-off valuel̂ increases asε decreases and in the limit

l̂0 = lim
ε→0

l̂(ε) =
1
2a

(

1
x̂2
−

1
c2

)

(21)

which also corresponds to the characteristic exponentβ = 0 [16]. Ford = 0.1 Eq. (21)
givesl̂ ≈ 1012, hence for the values ofε used in Fig. 2(c) we havel ≪ l̂. Sincex̂ ≈ 0 the
Case A1 ( ˆx = 0) can provide reasonable approximation for the characteristic exponent
β. Any decrement ofε must increase the average laminar lengthl up to the asymptotic
limit. To confirm this we performed simulations decreasingε (Fig. 3, circles). Indeed,
in a wide range ofε (up to 10−7) the laminar length is governed by the characteristic
exponent given by (16).

-7 -6 -5 -4 -3 -2 -1

2

3

4

5

6

7

lg(  )

lg
(l
 )

d = 0.1

d = 0.13

ε

β = 0

Figure 3: Characteristic relations of the averaged length of the laminar phasel vs ε for the map (3), (20).
Circles and triangles show numerical data. Ford = 0.1 the solid line has slopeβ = 0.885 in agreement
(within 6% of relative error) with the analytical value 0.948 given by (16). Ford = 0.13 the horizontal
dashed line shows the asymptotic behavior ofl, with β→ 0.

However, if we slightly increase the parameterd = 0.13, making ˆx bigger than
before, then the same calculation givesl̂ ≈ 104, and hencel must rapidly saturate, and
then the critical exponent attains the valueβ = 0 as expected in the Case B (see Eq.
(18)). Our numerical simulations confirms such behavior ofl (Fig. 3, triangles).

5. Pikovsky intermittency

Another clasical example of nonstandard intermittency canbe observed in the
Pikovsky’s map:

xn+1 = f (xn) =

{

G(xn) xn ≥ 0
−G(−xn) xn < 0

(22)

whereG(x) = xq
+ hx− 1 (q, h > 0). The map (22) has no fixed points and to facilitate

the study of its dynamics it is convenient to introduce the second iteration, i.e. to
consider Eq. (3) withF(x) = f 2(x) = f ( f (x)). In what follows we shall deal with this
new map.
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Figure 4: Second iteration of the map (22) demonstrating Type-II (anomalous) intermittency. a) Non-
overlapping case with a gap between two reinjection intervals. Arrows show two routs of reinjection into two
disjoin intervalsI l andIr for the upper laminar region. Red dots mark positions of the fixed points. There are
two chaotic attractors in the map. b) Slightly overlapping case. Reinjection intervalsI l andIr overlap. There
exists single chaotic attractor. c) Time evolution of the map corresponding to the case (b). Bottom subplot
shows zoomed trajectory with two laminar phases near two unstable fixed points (h = 0.255,q = 0.29).

Figure 4 illustrates the map and an example of a trajectory. Two unstable fixed
points (Figs. 4(a) and 4(b), red dots) generate two laminar regions with Type-II in-
termittency. Since the map is symmetrical, we shall describe the upper fixed point
only, i.e. x0 > 0. We define two reinjection intervalsI l = [h − c, h] and Ir =

[F(−1), F(−1) + c], wherec, as in Sect. 4, is a constant defining extension of the
laminar region. Points into the intervalI l are mapped from the branch ofF(x) with the
end point at (0, h), whereas the intervalIr receives trajectories from the branch starting
at (−1, F(−1)) (Figs. 4(a) and 4(b), arrows). IfF(−1) > h then there is a gap between
these intervals (Fig. 4(a)), whereas in the opposite case the intervals overlap (Fig. 4(b)).
The trajectory shown in Fig. 4(c) corresponds to the latter case.

In the non-overlapping case there exists two chaotic attractors. Their basins of
attraction depend on the controlling parameterq and, by playing with this, we can
merge them thus obtaining a single chaotic attractor. In thelatter case trajectories can
stay for a long time either in the region|x| < x0 or in |x| > x0 and then “jump” between
these parts of the attractor (Fig. 4(c), top subplot). The chaotic dynamics is alternated
by laminar phases. Figure 4(c), (bottom subplot) shows two laminar phases near the
unstable points: one of them just alters the chaotic dynamics in the central part of the
attractor, whereas the other leads to transition from the central to the peripheral part of
the attractor.
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5.1. Non-overlapping case

Let us first assume thatI l ∩ Ir = ∅ (Fig. 4(a)), then the map has two attractors
and consequently two independent chaotic behaviors with intermittency selected by
the initial condition. Therefore the integral characteristics M(x) has two independent
branches.

To evaluateM(x) we set the starting point in (4) toxr
s = x0−c andxl

s = x0+c for the
intervalsIr andI l , respectively. We notice that ˆxr = inf x j∈Ir {x j} ≈ F2(−x+r ), however,
x̂l = supx j∈I l

{x j} ≈ F(0−), thus to adapt the numerical approximation (5) to the interval
I l we sort the reinjection points in reverse order, i.e.x j ≥ x j+1.

Figure 5(a) shows two branches ofM(x) evaluated over two chaotic attractors. As
expected each branch is well approximated by a straight linewith ml = 0.760, x̂l =

0.252 andmr = 0.723, x̂r = 0.272 for the intervalI l and Ir , respectively. As in the
previous case, we have analytical expressions for ˆxl = h and x̂r = hq

+ h2 − 1, which
providex̂l = 0.255 and ˆxr = 0.262, close to the experimental values. Again, as in Sect.
4, we shall use the experimental instead of analytical values to demonstrate that such
approximation is good enough to appropriately describe theintermittency.
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Figure 5: Analysis of the intermittency in the Pikovsky’s map in the non-overlapping (top row,q = 0.29,
h = 0.255, two chaotic attractors) and slightly overlapping (bottom row,q = 0.27,h = 0.255, single chaotic
attractor) cases. Results are shown for the second iteration of the map (22). a,d) Numerical data (dots) for
two branches ofM(x) computed using (5) for reinjections in the intervalsI l andIr . Dashed cyan lines show
the corresponding least mean square fits, which then used to plot φ(x) andψ(l). Dashed line with slope
m= 0.5 corresponds to the uniform RPD. b,e) RPDs forI l andIr . Numerical data (dots) and pdfs evaluated
by (7) (dashed cyan curves). c,f) Probability density of thelength of laminar phase for the intervalIr (for I l

the pdf is similar). Dashed cyan curve corresponds to (14).

For both branches ofM(x) the slope is significantly higher than 0.5, which corre-
sponds to infinite tangent generating the power law (7). In Fig. 4(a) this corresponds
to the short arrow indicating reinjection into the intervalI l from the regionx . x0 with
near infinite tangent ofF(x) at x = 0. Other singular point is−xr . We notice that points
x & −xr are mapped to the region nearF(−1) (see dashed trajectory in Fig. 4(a)) and
finally, after the second iteration they enter in the laminarintervalIr (long arrow).

Figure 5(b) compares the RPDs evaluated by the power law (7) using the above
obtained functionM(x) and numerical data. As before (see Fig. 2) the obtained pdf
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fits well to the data. Since in this case (x0 − x̂l) > 0 and (x̂r − x0) > 0 there is a gap
that determines the corresponding cut-off lengthsl̂ l and l̂r . Therefore the length of the
laminar phase is bounded. However, in this case we haveml ,mr > 0.5, and hence
αl , αr > 0 and thenψ(l̂ l) = ψ(l̂r ) = 0. Thus the asymptotic behavior of the pdf atl → l̂
is opposite to the blow up observed in Fig. 2(c). Figure 5(c) confirms this conclusion.
Note that here, the parametersa andε used in Eqs. (1) and (14) are given by [19]:

a =
1
6

F′′′(x0), ε = F′(x0) − 1 (23)

5.2. Slightly overlapping case

In the parameter regionh > F(−1) the intervalsI l and Ir overlap and the map
has a single chaotic attractor (Figs. 4(b) and 4(c)). The analysis similar to the above
described is shown in Figs. 5(d-f).

Here, the mixed RPD is composed of partially overlapping RPDs φl(x) andφr(x)
defined on their respective reinjection intervalsI l andIr . Thus to evaluate the integral
characteristicsM(x) we separated the numerically obtained reinjection pointsinto two
subsets according with their values one iteration before the reinjection into the laminar
zone (Fig. 4(b), long and short arrows). Figure 5(d) shows two branches ofM(x)
evaluated separately over two reinjection subsets. The linear fits giveml = 0.770,
x̂l = 0.253 andmr = 0.732,x̂r = 0.251. These values substituted in (7) defineφl(x) and
φr(x). Finally the composite RPD is given by

φ(x) =



















wφl(x) if x ≤ x̂r

wφl(x) + (1− w)φr (x) if x̂r < x < x̂l

(1− w)φr (x) if x̂l ≤ x
(24)

wherew is the statistical weight

w =
Nl

Nr + Nl
(25)

whereNl andNr are the numbers of reinjection points in the intervalsI l andIr , respec-
tively. The RPD evaluated by (24) is in a good agreement with numerical data (Fig.
5(e)).

The pdf of the laminar length (14) determined by using (24) matches well the nu-
merical data (Fig. 5(f)). We note that the pdfs of the laminarphase of intermittency
look similar in the non-overlapping and overlapping cases (Fig. 5(c)vsFig. 5(f)). In
spite of this they differs significantly. In the former case there exists a cut-off length
l̂ ≈ 75 and no laminar dynamics with the length above this value can be observed ex-
perimentally. In the latter case the probability to find a long enough laminar phase (say,
l ≈ 75) is close to zero but finite.

In the non-overlapping case with the cut-off length (Fig. 5(c)), according to our
classification the Case B, we have asymptoticallyβ → 0. On the other hand, in the
overlapping regionφ(x0) > 0 andφ′(x0) is bounded (Fig. 5(e)), thus we are in the Case
C and in the limitε→ 0 we getβ = 0.5, which corresponds to the uniform reinjection.
As in Sect. 4 we can assume ˆx ≈ x0 and approximate the critical exponentβ following
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the limit given in the Case A2, i.e.β ≈ 0. Note, however, that this approximation is
worse than we had before becausem is close to one. We assume that the overlapped
region is very small, consequentlyφ(x0) ≈ 0, whereas in Sect. 4φ(x0) was unbounded.
This means that the set of points reinjected in a small vicinity of x0 has a low statistical
weight and consequently the limit valueβ = 0.5 is difficult to reach, i.e. this asymptotic
value is observed beyond the numerically accessible parameter region. This situation
will be changed ifφ(x) 0 0 as we shall explain in the next subsection.

Figure 6 shows numerical data and theoretical estimation. The blue curve with
asymptotic behavior indicated by the straight line labelled by a corresponds to nu-
merical integration of (15) where we used the RPD given by (24). In the region of
numerically accessible values ofε this estimate approximates well the numerical data.
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Figure 6: Characteristic relation of the average length of the laminar phasel vs ε. Dots correspond to
numerical data, whereas blue curve refers to numerical integration of Eq. (15) using (24) as RPD. The
asymptotic behavior is given by dashed line (marked bya) with the slope−0.5 (β = 0.5). The red straight
line (marked byb) with the slope−0.5 (β = 0.5) matches the numerical data for the strongly overlapping
case considered in Ref. [19].

5.3. Strongly overlapping case

Until now we studied intermittency in the parameter regionsshowing either a gap
between two RPDs (Fig. 4(a)) or their small overlapping (Fig. 4(b)). In both cases
φ(x0) is either equal or close to zero. Let us now study the remaining case correspond-
ing to strong overlapping of the intervalsIr andI l .

Figure 7 shows the RPD obtained for the same parameter set used in Ref. [19]
(h = 0.383,q = 0.1), that corresponds to a strong overlapping of the RPDsφl(x) and
φr(x). The RPD has a parabolic shape with high enoughφ(x) in the vicinity of x0 (fixed
point of the map). In this case the overlapped region is bigger than the laminar region,
i.e. (x0 − c, x0 + c) ⊂ (F(−1), h), hence from (24) we get the RPD

φ(x) = wφl(x) + (1− w)φr (x) (26)

Since bothF(−1) andh lie out of the domain of (5), this approximation cannot provide
estimates for ˆxl and x̂r , instead it gives the limits of the domain ofM, i.e. x̂l ≈ x0 − c
andx̂r ≈ x0 + c. We notice, however, that the valuesml andmr are estimated correctly
and hence the RPD (26) accurately describes the numerical pdf (see Fig. 7).
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Figure 7: RPD for the Pikovhy’s map in the strongly overlapping case. Dots correspond to numerical simu-
lations and the cyan curve is obtained by Eq. (26) with the fitted values for the reinjection onI l : ml = 0.76
(αl = 2.174). The corresponding values forIr aremr = 0.716 (αr = 1.519). In this caseNl/Nr = 0.86.

Contrary to the case of slight overlapping discussed above now we haveφ(x0) 0 0
(Fig. 7). Thus we are in the Case C of our classification of the characteristic relation
(see Sect. 3), hence we recoverβ = 0.5 even for large enough values ofε (up toε ≈
0.5). Consequently all statistics are compatible with the uniform reinjection, despite of
the fact that the obtained RPD is non-uniform (Fig. 7). Figure 6 (strong overlap) shows
the characteristic relation betweenl andε for this case. The green arrow represents the
continuous transition of the characteristic relation as the overlapped region increases
from very small (blue curve) to large values (red line).

6. Conclusions

Pathological cases of intermittency described in the literature are known by their
significant deviation of the main characteristics (e.g. thelength of the laminar phase)
from those predicted by the classical theory. In this work wehave shown that the use of
generalized Reinjection Probability Density provides faithful description of anomalous
and standard intermittencies in the unified framework. The generalized RPD taken in
the form of a power-law function can be fitted to the experimental or numerical data.
Moreover the proposed procedure can cope with relatively reduced data sets, which
makes it useful for experimental applications. We demonstrated the method on two
particular but canonical cases of the Type-II and Type-III intermittencies.

Calculation of the RPD is based on the earlier introduced integral characteristic
M(x), which is a linear function with slopem ∈ (0, 1) that determines the type of RPD.
In particular,m = 0.5 corresponds to the classical uniform RPD, whereas the limit
cases (m ≈ 0 andm ≈ 1) describe the anomalous intermittency. For anomalous Type-
III intermittency we have found the lowest value ofm≈ 0.09 observed up to now. This
value predicts the RPD close to delta function centered at zero, i.e. φ0(x) = δ(x). The
second anomalous case, the Pikovski intermittency (seconditeration of the Pikovski’s
map), corresponds to the Type-II intermittency and high values ofm. We gotm≈ 0.77,
which is the biggest value found up to now. In this case the RPDis close toφ1(x) =
δ(x−c) and consequentlyφ(x) & 0 in the vicinity of small values ofx, which is opposite
to Type-III case.
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We have shown that the obtained RPDs are in a good agreement with numerical
data, and hence our approach is robust against strong lengthcompression. The Type-III
intermittency exhibits atypical density of the laminar length, l, which has been accu-
rately described by the approach.

For the Pikovski intermittency we described two different cases of the anomalous
statistics with similar values ofm. One of them corresponds to the existence in the
phase space of two chaotic attractors, whereas the other hassingle attractor. In the map
these cases differ by overlapping of reinjection intervals (non-overlapping vs slightly
overlapping). The existence of two reinjection intervals provides two reinjection mech-
anisms and two RPDs defined over each interval. Thus to obtained them we separated
all reinjection points into two independent sets accordingwith their origin just before
the reinjection. Finally, the RPDs evaluated over each dataset provide the composite
RPD describing the dynamics of the system. We have shown thatthe obtained RPD
and the corresponding probability density of the length of the laminar phase are in good
agreement with numerical simulations.

We have also introduced classification of different cases of intermittency showing
different critical exponents (l ∝ ε−β) based on the parameters ofM(x). According to
this classification the Type-III intermittency, dependingon the parameters, can have
two characteristic exponents for the numerically accessible values of the controlling
parameter. Since there is a cut-off lengthl̂ even in the limitε → 0, we getβ = 0 in the
parameter region log(l) . log(l̂0). However, if log(l) ≪ log(l̂0) then assuming ˆx ≈ 0
we obtainedβ = (2− 3m)/(2− 2m), in good agreement with numerical data (β ≈ 0.9).
We note that both cases are far from the classical valueβ = 0.5. For the Pikovski
intermittency the characteristic exponent depends on the level of overlapping of two
reinjection intervals. In the non-overlappingcase we haveβ = 0. For slight overlapping
andx̂r < x0 this exponent should beβ = 0.5, but it happens in the parameter region for
whichφ(x) ≈ 0 in the vicinity ofx0 (sincem> 2/3). Such limit is difficult to be reached
due to very low number of reinjected points there. Finally for strong overlapping we
recover the limitβ = 0.5 predicted by the classical theory assuming the uniform RPD,
in spite of the non-uniform RPD in this case.
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