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Abstract

The classical theory of intermittency assumes uniform gogpoints reinjected from
the chaotic to the laminar region. Though it works fine in sonoElel systems, there
exist a number of so-called pathological cases charaetkhy a significant deviation
of main characteristics from the values predicted on théshafsthe uniform distri-
bution. Recently we reported on how the reinjection prolitgtdensity (RPD) can
be generalized. Here we extend this methodology and appdydifferent dynami-
cal systems exhibiting anomalous Type-Il and Type-lIll inti#tencies. We show that
one-parametric power law RPD successfully accounts foriatyeof significantly dif-
ferent statistics observed in distinct dynamical systeifise obtained RPDs fit well
into numerical data and enable analytic estimation of thgtle of the laminar phase
of intermittent behaviors. We also derive and classify ahtaristic relations between
the mean laminar length and main controlling parameter ifepeagreement with the
data provided by numerical simulations.

Keywords: Chaos, Intermittency, One dimensional map.

1. Introduction

Intermittency is a particular route to the deterministiaab characterized by spon-
taneous transitions between laminar and chaotic dynararsthe first time this con-
cept has been introduced by Pomeau and Maneville in thextmftidhe Lorenz system
[1, 2]. Later the intermittency has been found in a varietydifferent systems in-
cluding, for example, periodically forced nonlinear okstirs, Rayleigh-Bénard con-
vection, derivative nonlinear Schrodinger (DNLS) eqoiatiand the development of
turbulence in hydrodynamics (see e.g. [3-5]). Proper tatale characterization of in-
termittency based on experimental data is especially Usafatudying problems with
partial or complete lack of knowledge on exact governingagigus, as it frequently
happens e.g. in Economics, Biology, and Medicine (see 6,d1]].

The intermittency has been classified in three types calléid and Il [8]. The
local laminar dynamic of Type-I intermittency evolves in arrow channel, whereas
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the laminar behavior of Type-Il and Type-lIl intermitteasidevelops around a fixed
point of generalized Poincare maps:

X1 = (L+ €)X +axs  Type-ll (1)

X1 = —(L+ &) —axy  Type-lll 2)
wherea > 0 accounts for the weight of the nonlinear componentaisda controlling
parameter|§| < 1). Fore 2 0, the fixed poinky = 0 becomes unstable, and hence tra-
jectories slowly escape from the origin preserving andnsug orientation for Type-Il
and Type-lll intermittencies, respectively.

Other characteristic attribute of the intermittency is ghebal reinjection mecha-
nismthat maps trajectories of the system from the chaotic regamk into thelocal
laminar phase. This mechanism can be described by the ponémg reinjection
probability density (RPD), determined by the chaotic dyitamnof the system. Analyt-
ical expressions for the RPD are available for a few problenig, hence to describe
main statistical properties of intermittencyfigrent approximations of the RPD have
been employed. The most common approach uses the uniform\&#Eh, however,
works fine in some model cases only [9-11]. Another approacisiders reinjection
into a given point in the presence of noise [12—14]. Nevéets there exist a number
of so-called pathological cases where these approachés &iplain the behavior of
the dynamical systems.

Recently to describe the reinjection mechanism of a widssctd dynamical sys-
tems exhibiting intermittency we introduced a generalR&dD, parametric power law
function, which includes the uniform reinjection as a parar case [15, 16]. We
showed that the shape of the generalized RPD is determingatthehavior of trajec-
tories within chaotic regime in a vicinity of a point in theiRcare map with infinite or
zero tangent. Later it has been shown that this mechanisshist against the external
noise [17]. Here we further develop this approach and appdypathological cases of
intermittency described in the literature [18, 19]. We shbwat all these cases can be
now included in the general theoretical framework.

2. Assessment of RPD function

First let us briefly describe the theoretical framework tiatounts for a wide class
of dynamical systems exhibiting intermittency. We consilgeneral 1-D map

Xni1 = F(Xn), F:R-R )

which exhibits intermittency. The RPD function, denotedehey ¢(x), determines the
statistical behavior of trajectories and depends on thecpdar shape of(x). There
is no direct clue on how to derive robustfx) from experimental or numerical data,
specially if only a small data set is available.

Earlier we have shown that the key point to solve this prohiketo introduce the
following integral characteristics:

Fro@dr o x
M(X) =4 Jre@dr if fxs ¢(r)dr 0 @
0 otherwise



wherexs is some “starting” point. Setting a constant> 0 that limits the laminar
region we define the domain M, i.e. M : [Xp — C, X + €] — R, wherexg is the fixed
point of (3) defining the laminar phase of intermittency.He previous works [15, 16]
we usedxs = Xo, however, a more general approach sets xg + c. Below, for the
sake of simplicity, we shall assume that= xg — C.

SinceM(X) is an integral characteristics, its numerical estimat®more robust
than direct evaluation af(x). This allows reducing statistical fluctuations even for a
relatively small data set or data with high level of noise.approximate numerically
M(X), we natice that it is an average over reinjection pointhminterval ks, Xo + C),
hence we can write

1 n
M(X) = ﬁ;x,-, Xn-1 < X < Xn (5)

where the data set (reinjection poin{tx)};“:l has been previously sorted, iXg.< Xj.1.
For a wide class of maps exhibiting Type-Il or Type-Ill intd@ttencyM(x) follows

linear law
o mx-%+X if x=X
M(¥) = { 0 otherwise 6)

wherem € (0, 1) is a free parameter andis the lower boundary of reinjections, i.e.
X = inf{x;}. Then using (4) we obtain the corresponding RPD:

2m-1
1-m

(7)

Form = 1/2 we recover the most common approach with uniform RPD,d(&) =
1/c, widely considered in the literature. The RPD (7) has twatloases:

$o() = lim 6() = 3(x~ 9 ®)

a+1 o .
¢(x)=W(x—x, with «a =

$109 = lim 9() = 5(x~©) ©

In the following sections we shall show that the patholobieses of intermittency are
close to these limits.

3. Length of laminar phase

Using ¢(x) we can derive the fundamental characteristic of the initéency, the
probability density of the length of the laminar phase. &wlhg [16] we introduce the
absolute value ok,. Then in the laminar phase the dynamic$x@f can be approxi-
mated by the following dferential equation

dix

o =
wherel approximates the number of iterations in the laminar regien the length of
the laminar phase. Solving (10) fbwe get

1 Cle+ax)
x) = 2 In(x2(5+ a 02))

elX + ax® (10)

(11)
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Since|x| in (11) is a random variable described $fx), the statistics of is also gov-
erned by the global properties of the RPD.
Let (1) be the probability density function éfthen it can be obtained by

() = 2002 [ 12

where

&
XM = \/(a+ g/c?)e=l —a (13)

is the inverse function df|x]). Thus the pdf of the length of the laminar phase is given
by
w(1) = g(X(1)) [aX()® + eX(1)] (14)

Using (14) we can determine the mean valué of
= f sy(s)ds (15)
0

and hence estimate the critical exponent of the charatiteriation] « &7 which
describes, for small values ef how fast the length of the laminar phase grows while
¢ decreases. The critical expongmdepends om andX according with the following
cases:

e Case AX'=Xg

Al: me (0,2/3). Equations (14) and (15) give
2-3m
== 1
B=5—%r (16)
Particularly limp—08 = 1.
A2: me [2/3,1). Equations (14) and (15) give
B=0 a7)
e Case BxX™> xo. There is an upper cutffor | and in the limite — 0 the valud
practically does not change, hence

B=0 (18)
o Case CxX'< xo. If ¢(x0) # 0 and¢’(Xo) is bounded, then
1
B=5 (19)

as in the uniform reinjection.

In certain situations the described limit valuesgofan be only reached numerically
using prohibitively small values of. In particular as we shall show below, in the Case
C if X = Xo the characteristic relation matches the Case A (Xp) for small enough
values ofe.



4. Anomalous Type-l11 intermittency

In this section we apply the theoretical results presentegdeato the map (3) with
F() = —((1+&)x+ e (20)

This dynamical system exhibits Type-IIl intermittency dahd pdf of the laminar length
deviates significantly from the prediction made by the étzdsheory. In Ref. [18] it

has been argued that the observed deviation is due to sgroaguniform reinjection.
Let us now show how this reinjection process can be descriiidn our general

framework.

15 ,

xn+1 \

/

/
/
/

/

-15

\

\

\

\

\

!
A

!

!

!

|
-X

0 X, ' 15

m

Figure 1: Sketch of the map (3), (20) exhibiting anomaloup€Hjl intermittency. Thick arrow illustrates
mapping of the points from the chaotic region (around theimam of F(x)) into the region with practically
zero tangent oF (x) and thin arrow indicates their reinjection to the lamiregion.

The map (3), (20) has single unstabdex 0) fixed point atxy = 0. The behavior
of trajectories (with direction reversing) negg defines the laminar phase of inter-
mittency. Figure 1 illustrates the reinjection processrfrthe chaotic region around
the maximum ofF(x) into the laminar region. Note the relative thickness of &éne
rows reflecting strong compression of the reinjected ttajées, which suggests sig-
nificantly nonuniformg(x). The reinjection point nearest to the origin is given by
% = F?(xm) > 0. Thus there is a gap around the origia (-, X) that receives no rein-
jection. We notice that such reinjection mechanistfeds from those proposed in Ref.
[16] based on expansion of trajectories around the maxinfuR{x). Indeed, here the
function F(X) has very small tangent fox| > 1, and points around its maximum are
mapped into a small region in the laminar zone (Fig. 1).

4.1. Estimation of RPD

To estimate the functioM we numerically iterated the map and then evaluated (5).
Due to the symmetry of the map, we consider only reinjectioimgs from one side.



As expected the data obtained fit well to the linear law (Fi@)2 Thus we can con-
clude that the power law (7) generated by trajectories pgssiound the maximum and
minimum of F(X) is robust against strong compression in the reinjectionharism.
Least mean square fit of the data gives= 0.0927 andx™= 0.9 x 1073, As expected

5 ()
0.012f» w(l)
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Figure 2: Analysis of the anomalous Type-Ill intermittenoythe map (3), (20)d = 0.1, £ = 0.005, and the
laminar interval {1, 1]). a) Assessment of the RPD. Numerical simulation andtfandV(x) evaluated by
(5) (dots). Cyan dashed line corresponds to the least memmeséjt. Black dashed line with slope= 0.5
illustrates the functiorM(x) corresponding to the uniform RPD. b) Numerical RPD. Dastyah curve
corresponds to (7) with the parameters found in (a). c) Rritihyadensity of the length of the laminar phase.
Cyan dashed line corresponds to (14).

the slope dfers significant fromm = 1/2 (Fig. 2(a), dashed black line). Substituting
the found value into (7) we determine the exponenrt —0.898. We note that the ana-
lytical value for the lower boundary of reinjectiorns="F?(x.) ~ 10~* is close enough
to the value found experimentally. In this work we shall use éxperimental valug ~
instead of the theoretical one to stress the fact that thet eskape of(x) and the exact
value X are not necessary to obtain faithful description of allistitproperties of the
intermittency.

To crosscheck the obtained results we plotted numerical @ad predicted shape
of ¢(x) (Fig. 2(b)). Visual inspection confirms good agreementeen the numeri-
cal data and the analytical expression. We note that for-tgergent nonlinearity and
strong compression of the reinjected trajectories (Figh& RPD shown in Fig. 2(b) is
closed to the limipg = §(x — X) as we expected fon — 0 (see Eq. (8)).

4.2. Length of laminar phase

Earlier two separate analytical arguments to estimate ¢havior ofy(l) in oppo-
site limits ( — 0 andl — [) have been proposed [18]. We note that our approach
provides approximation af(l) in a single shot (see Eqg. (14)). Indeed, using the found
RPD (Fig. 2(a-b)) we can easily evaluate the pdf for the ledgthe laminar phase in
good agreement with experimental data (Fig. 2(c)).

SinceX > %o = 0, according to our classification we are in the Case B anctther
exists an upper cutfbfor |. The cut-df length,|, is given by

X(N) = %

Hence ad — [ the pdfg(X(1)) grows to infinity @ < 0) and in accordance with (14)
¥ — oo. Itis worth noting that the presence of a ctifis not a stficient condition for
unbounded growth aof asl — . Besides, it is also necessary that (0,1/2). In the
next section we shall show a counterexample.



The cut-df valuel increases as decreases and in the limit

which also corresponds to the characteristic expgfien0 [16]. Ford = 0.1 Eq. (21)
givesl ~ 10'2, hence for the values efused in Fig. 2(c) we have< I. Sincex'~ 0 the
Case Al = 0) can provide reasonable approximation for the charattegxponent

B. Any decrement of must increase the average laminar lerigib to the asymptotic
limit. To confirm this we performed simulations decreasirn(§ig. 3, circles). Indeed,

in a wide range of (up to 107) the laminar length is governed by the characteristic
exponent given by (16).

7 5 5

lgiS)

Figure 3: Characteristic relations of the averaged lendtihe laminar phasévs & for the map (3), (20).
Circles and triangles show numerical data. Hoe 0.1 the solid line has slopé = 0.885 in agreement
(within 6% of relative error) with the analytical value9a8 given by (16). Fod = 0.13 the horizontal
dashed line shows the asymptotic behaviok, @fith 3 — 0.

However, if we slightly increase the parametke 0.13, makingx"bigger than
before, then the same calculation giVes 10°, and hencé must rapidly saturate, and
then the critical exponent attains the vagie- 0 as expected in the Case B (see Eq.
(18)). Our numerical simulations confirms such behavidr(®ig. 3, triangles).

5. Pikovsky inter mittency

Another clasical example of nonstandard intermittency banobserved in the
Pikovsky's map:

_ | G(xn) Xn =0

Xnel = f(Xn) - { —G(—Xn) Xn < 0

whereG(x) = x4 + hx— 1 (g, h> 0). The map (22) has no fixed points and to facilitate
the study of its dynamics it is convenient to introduce theose iteration, i.e. to
consider Eq. (3) withF(x) = f2(x) = f(f(x)). In what follows we shall deal with this
new map.

(22)



iteration

Figure 4: Second iteration of the map (22) demonstratingedlyganomalous) intermittency. a) Non-
overlapping case with a gap between two reinjection intenrrows show two routs of reinjection into two
disjoin intervalsl| andl, for the upper laminar region. Red dots mark positions of tkedfpoints. There are
two chaotic attractors in the map. b) Slightly overlappiage Reinjection intervals andl, overlap. There
exists single chaotic attractor. ¢) Time evolution of thepnoarresponding to the case (b). Bottom subplot
shows zoomed trajectory with two laminar phases near twtabfesfixed pointst{ = 0.255,q = 0.29).

Figure 4 illustrates the map and an example of a trajectowyo @instable fixed
points (Figs. 4(a) and 4(b), red dots) generate two lamiegions with Type-II in-
termittency. Since the map is symmetrical, we shall descttite upper fixed point
only, i.e. Xxp > 0. We define two reinjection intervals = [h — c,h] and I, =
[F(-1), F(-1) + c], wherec, as in Sect. 4, is a constant defining extension of the
laminar region. Points into the intervialare mapped from the branch B{x) with the
end point at (Oh), whereas the intervdj receives trajectories from the branch starting
at (-1, F(-1)) (Figs. 4(a) and 4(b), arrows). F(-1) > hthen there is a gap between
these intervals (Fig. 4(a)), whereas in the opposite casiatérvals overlap (Fig. 4(b)).
The trajectory shown in Fig. 4(c) corresponds to the lattsec

In the non-overlapping case there exists two chaotic dtirac Their basins of
attraction depend on the controlling paramejeand, by playing with this, we can
merge them thus obtaining a single chaotic attractor. Irdtier case trajectories can
stay for a long time either in the regi¢xi < xp or in [x| > %o and then “jump” between
these parts of the attractor (Fig. 4(c), top subplot). Thaotie dynamics is alternated
by laminar phases. Figure 4(c), (bottom subplot) shows twaiiar phases near the
unstable points: one of them just alters the chaotic dynsmithe central part of the
attractor, whereas the other leads to transition from tinérakto the peripheral part of
the attractor.



5.1. Non-overlapping case

Let us first assume thag N I, = o (Fig. 4(a)), then the map has two attractors
and consequently two independent chaotic behaviors witkrritittency selected by
the initial condition. Therefore the integral charactéesM(x) has two independent
branches.

To evaluateM(x) we set the starting point in (4) t = Xo—candx, = xo+c for the
intervalsl, andl,, respectively. We notice that = infye {xj} ~ F2(-x), however,

X = sup, e, {Xj} ~ F(07), thus to adapt the numerical approximation (5) to the irgter
I| we sort the reinjection points in reverse order, kez Xj.1.

Figure 5(a) shows two branchesf(x) evaluated over two chaotic attractors. As
expected each branch is well approximated by a straightwitle m = 0.760, X =
0.252 andm. = 0.723,% = 0.272 for the interval, andl,, respectively. As in the
previous case, we have analytical expressionsifer A and%; = h? + h? — 1, which
providex; = 0.255 andx; = 0.262, close to the experimental values. Again, as in Sect.
4, we shall use the experimental instead of analytical walaelemonstrate that such
approximation is good enough to appropriately describérteemittency.

(a) (b) ©)
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Figure 5: Analysis of the intermittency in the Pikovsky’s pnia the non-overlapping (top rowg = 0.29,

h = 0.255, two chaotic attractors) and slightly overlapping (ot row,q = 0.27, h = 0.255, single chaotic
attractor) cases. Results are shown for the second iterafithe map (22). a,d) Numerical data (dots) for
two branches oM(x) computed using (5) for reinjections in the intervilandl,. Dashed cyan lines show
the corresponding least mean square fits, which then uselbtt@(x) andy(l). Dashed line with slope
m = 0.5 corresponds to the uniform RPD. b,e) RPDslfandl,. Numerical data (dots) and pdfs evaluated
by (7) (dashed cyan curves). c,f) Probability density ofléregth of laminar phase for the interval (for I

the pdf is similar). Dashed cyan curve corresponds to (14).

For both branches dfi(x) the slope is significantly higher than5Q which corre-
sponds to infinite tangent generating the power law (7). tn &{a) this corresponds
to the short arrow indicating reinjection into the interlyffom the regiornx < X with
near infinite tangent df (x) atx = 0. Other singular point isx.. We notice that points
X 2 —X are mapped to the region ndaf-1) (see dashed trajectory in Fig. 4(a)) and
finally, after the second iteration they enter in the lamingarvall, (long arrow).

Figure 5(b) compares the RPDs evaluated by the power lawsfiguhe above
obtained functiorM(x) and numerical data. As before (see Fig. 2) the obtained pdf



fits well to the data. Since in this case - %) > 0 and & — %) > O there is a gap
that determines the corresponding cﬂﬂengthsﬂ andi,. Therefore the length of the
laminar phase is bounded. However, in this case we have. > 0.5, and hence
a,a; > 0 and theny(l)) = y(l;) = 0. Thus the asymptotic behavior of the pdf ab |
is opposite to the blow up observed in Fig. 2(c). Figure 5¢)fitms this conclusion.
Note that here, the parametarande used in Egs. (1) and (14) are given by [19]:

a= F00) e =Fx) -1 23

5.2. Slightly overlapping case

In the parameter regioh > F(-1) the intervalsl; and |, overlap and the map
has a single chaotic attractor (Figs. 4(b) and 4(c)). Théyaisasimilar to the above
described is shown in Figs. 5(d-f).

Here, the mixed RPD is composed of partially overlapping BRBIPX) and ¢, (X)
defined on their respective reinjection intervlandl,. Thus to evaluate the integral
characteristic$1(x) we separated the numerically obtained reinjection pairitstwo
subsets according with their values one iteration befareemjection into the laminar
zone (Fig. 4(b), long and short arrows). Figure 5(d) shows branches oM(x)
evaluated separately over two reinjection subsets. Tlealifits givem = 0.770,
% = 0.253 andm, = 0.732,% = 0.251. These values substituted in (7) defiife) and
¢r(X). Finally the composite RPD is given by

Wb (X) if x<X
¢(X) = { wai(X) + (1 -w)gr(x) if % <x<X (24)
(1-w)¢r(X) if % <x

wherew is the statistical weight

w= N

(25)

whereN, andN; are the numbers of reinjection points in the interdabndl,, respec-
tively. The RPD evaluated by (24) is in a good agreement witimerical data (Fig.
5(e)).

The pdf of the laminar length (14) determined by using (24)aimes well the nu-
merical data (Fig. 5(f)). We note that the pdfs of the lamiphase of intermittency
look similar in the non-overlapping and overlapping caség.(5(c)vsFig. 5(f)). In
spite of this they dters significantly. In the former case there exists a dhitemgth
[ ~ 75 and no laminar dynamics with the length above this valmebeaobserved ex-
perimentally. In the latter case the probability to find ag@mough laminar phase (say,
| ~ 75) is close to zero but finite.

In the non-overlapping case with the cuf-tength (Fig. 5(c)), according to our
classification the Case B, we have asymptoticAlly»> 0. On the other hand, in the
overlapping regio(xg) > 0 andg’(xo) is bounded (Fig. 5(e)), thus we are in the Case
C and in the limite — 0 we gefB = 0.5, which corresponds to the uniform reinjection.
As in Sect. 4 we can assumex %, and approximate the critical exponghfiollowing

10



the limit given in the Case A2, i.e83 ~ 0. Note, however, that this approximation is
worse than we had before becausés close to one. We assume that the overlapped
region is very small, consequeni#yxo) ~ 0, whereas in Sect. d(xo) was unbounded.
This means that the set of points reinjected in a small \igciofi Xo has a low statistical
weight and consequently the limit valde= 0.5 is difficult to reach, i.e. this asymptotic
value is observed beyond the numerically accessible paeamegjion. This situation
will be changed iip(x) # 0 as we shall explain in the next subsection.

Figure 6 shows numerical data and theoretical estimatidme Qlue curve with
asymptotic behavior indicated by the straight line lalwkleyy a corresponds to nu-
merical integration of (15) where we used the RPD given by).(24 the region of
numerically accessible values othis estimate approximates well the numerical data.

strong
overlap

lg(l)

-

slight overlap
: N
Ig(e)

Figure 6: Characteristic relation of the average lengthhef laminar phasé vs ¢. Dots correspond to
numerical data, whereas blue curve refers to numericagraten of Eq. (15) using (24) as RPD. The
asymptotic behavior is given by dashed line (markedpwith the slope-0.5 (8 = 0.5). The red straight
line (marked byb) with the slope-0.5 (3 = 0.5) matches the numerical data for the strongly overlapping
case considered in Ref. [19].

-12

5.3. Strongly overlapping case

Until now we studied intermittency in the parameter regishewing either a gap
between two RPDs (Fig. 4(a)) or their small overlapping (Fgb)). In both cases
#(xo) is either equal or close to zero. Let us now study the remgicase correspond-
ing to strong overlapping of the intervdisandl,.

Figure 7 shows the RPD obtained for the same parameter sgtiugef. [19]
(h = 0.383,q = 0.1), that corresponds to a strong overlapping of the RADY and
¢r(X). The RPD has a parabolic shape with high enagighin the vicinity of xo (fixed
point of the map). In this case the overlapped region is bitggn the laminar region,
i.e. (X0 — C, %o + C) c (F(-1), h), hence from (24) we get the RPD

$(X) = wei(X) + (1 - W)ér (X) (26)

Since bothF(-1) andh lie out of the domain of (5), this approximation cannot poevi
estimates fox"and X, instead it gives the limits of the domain bf, i.e. X ~ xg— ¢
andX ~ X + ¢. We notice, however, that the valuesandm, are estimated correctly
and hence the RPD (26) accurately describes the numeritédgeFig. 7).

11
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Figure 7: RPD for the Pikovhy’s map in the strongly overlaygpcase. Dots correspond to numerical simu-
lations and the cyan curve is obtained by Eq. (26) with thedittalues for the reinjection dix m = 0.76
(a = 2.174). The corresponding values ferarem; = 0.716 (@, = 1.519). In this casé\;/N; = 0.86.

Contrary to the case of slight overlapping discussed abowewe havep(Xo) % 0
(Fig. 7). Thus we are in the Case C of our classification of theracteristic relation
(see Sect. 3), hence we recoyes 0.5 even for large enough values ofup toe ~
0.5). Consequently all statistics are compatible with théarmi reinjection, despite of
the fact that the obtained RPD is non-uniform (Fig. 7). Fegi(strong overlap) shows
the characteristic relation betwekande for this case. The green arrow represents the
continuous transition of the characteristic relation asdlierlapped region increases
from very small (blue curve) to large values (red line).

6. Conclusions

Pathological cases of intermittency described in theditee are known by their
significant deviation of the main characteristics (e.g. lémgth of the laminar phase)
from those predicted by the classical theory. In this workhaee shown that the use of
generalized Reinjection Probability Density provide#tail description of anomalous
and standard intermittencies in the unified framework. Téreegalized RPD taken in
the form of a power-law function can be fitted to the experitakor numerical data.
Moreover the proposed procedure can cope with relativelyced data sets, which
makes it useful for experimental applications. We demaistl the method on two
particular but canonical cases of the Type-Il and Typenriiéimittencies.

Calculation of the RPD is based on the earlier introduceedgiratl characteristic
M(x), which is a linear function with slopm € (0, 1) that determines the type of RPD.
In particular,m = 0.5 corresponds to the classical uniform RPD, whereas the limi
casesifh ~ 0 andm ~ 1) describe the anomalous intermittency. For anomalous-Typ
Il intermittency we have found the lowest valuerof~ 0.09 observed up to now. This
value predicts the RPD close to delta function centeredrat ze. ¢o(X) = §(X). The
second anomalous case, the Pikovski intermittency (seiteradion of the Pikovski's
map), corresponds to the Type-Il intermittency and higli@alofm. We gotm ~ 0.77,
which is the biggest value found up to now. In this case the RPEose top1(X) =
é(x—c) and consequenthy(x) = 0in the vicinity of small values of, which is opposite
to Type-Illl case.
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We have shown that the obtained RPDs are in a good agreentbnhwhnerical
data, and hence our approach is robust against strong leogiression. The Type-lll
intermittency exhibits atypical density of the laminardém |, which has been accu-
rately described by the approach.

For the Pikovski intermittency we described twdfdient cases of the anomalous
statistics with similar values ah. One of them corresponds to the existence in the
phase space of two chaotic attractors, whereas the othsirttgs attractor. In the map
these cases flier by overlapping of reinjection intervals (non-overlappis slightly
overlapping). The existence of two reinjection intervailsqides two reinjection mech-
anisms and two RPDs defined over each interval. Thus to aatdirem we separated
all reinjection points into two independent sets accordifth their origin just before
the reinjection. Finally, the RPDs evaluated over each skttgprovide the composite
RPD describing the dynamics of the system. We have showrthikatbtained RPD
and the corresponding probability density of the lengttheflaminar phase are in good
agreement with numerical simulations.

We have also introduced classification oftdient cases of intermittency showing
different critical exponents ¢« £#) based on the parametersM{x). According to
this classification the Type-Ill intermittency, dependimg the parameters, can have
two characteristic exponents for the numerically accéssiblues of the controlling
parameter. Since there is a cuf-@ngthl even in the limit: — 0, we get8 = 0 in the
parameter region lof( < log(io). However, if log{) < log(io) then assuming & 0
we obtainegb = (2 — 3m)/(2 - 2m), in good agreement with numerical dga~{ 0.9).
We note that both cases are far from the classical valde 0.5. For the Pikovski
intermittency the characteristic exponent depends onawel bf overlapping of two
reinjection intervals. In the non-overlapping case we lgaxe0. For slight overlapping
andX; < Xg this exponent should b&= 0.5, but it happens in the parameter region for
whichg(x) =~ 0 in the vicinity ofxg (sincem > 2/3). Such limit is dificult to be reached
due to very low number of reinjected points there. Finallydtvong overlapping we
recover the limij = 0.5 predicted by the classical theory assuming the uniform RPD
in spite of the non-uniform RPD in this case.
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